Microsoft Fabric Well-Architected Framework | CONFIDENTIAL

MICROSOFT FABRIC
WELL-ARCHITECTED FRAMEWORK

Enterprise Data Platform Design Guide
Best Practices for Reliability, Security, Cost, Operations & Performance

	RELIABILITY
	SECURITY
	COST
	OPERATIONS
	PERFORMANCE

Version 1.0 | January 2026

Table of Contents

Executive Summary
The Microsoft Fabric Well-Architected Framework provides a comprehensive set of guiding principles, best practices, and design patterns for building enterprise-grade data platforms on Microsoft Fabric. This framework is derived from Microsoft's Well-Architected Framework and adapted specifically for Fabric's unified analytics platform capabilities.
Microsoft Fabric represents a paradigm shift in enterprise data platforms, combining data engineering, data warehousing, real-time analytics, data science, and business intelligence into a single unified SaaS offering built on OneLake. This consolidation eliminates traditional integration complexities but introduces new architectural considerations that this framework addresses.
The Five Pillars
This framework is organized around five pillars that together enable organizations to build robust, secure, cost-effective, and high-performing data platforms:
	Pillar
	Focus Area

	Reliability
	Ensure workloads perform their intended function correctly and consistently. Design for resilience, disaster recovery, and business continuity.

	Security
	Protect data, applications, and infrastructure from threats. Implement defense-in-depth, identity management, and data protection strategies.

	Cost Optimization
	Maximize value while minimizing unnecessary spend. Implement capacity planning, consumption monitoring, and FinOps practices.

	Operational Excellence
	Run and monitor systems effectively. Implement DevOps, CI/CD, monitoring, and incident management practices.

	Performance Efficiency
	Use resources efficiently to meet requirements. Optimize compute, storage, and query patterns for maximum throughput.

Intended Audience
This framework is designed for data architects, platform engineers, data engineers, and technical leaders responsible for designing, implementing, and operating Microsoft Fabric environments. It assumes familiarity with core Fabric concepts including OneLake, Lakehouse, Warehouse, Data Factory, and Power BI.
How to Use This Framework
Each pillar section includes design principles, implementation guidance, best practices, anti-patterns to avoid, and a checklist for assessment. Organizations should review their existing implementations against these guidelines and prioritize improvements based on business impact and risk.

Pillar 1: Reliability
Reliability ensures that your Fabric workloads perform their intended function correctly and consistently when expected. A reliable data platform delivers trusted data to consumers on time, recovers gracefully from failures, and maintains data integrity under all conditions.
1.1 Design Principles
Design for Failure
Assume that components will fail and design systems that can tolerate and recover from failures. In Fabric, this means understanding the shared responsibility model where Microsoft manages infrastructure reliability while customers manage workload reliability.
Eliminate Single Points of Failure
Identify and mitigate components whose failure would cause system-wide outage. For Fabric, critical considerations include source system connectivity, gateway availability, and cross-region data access patterns.
Define and Test Recovery Procedures
Document recovery procedures and regularly test them. Fabric's Delta Lake format provides native time travel and ACID transactions that enable point-in-time recovery, but these capabilities must be configured and tested.
1.2 OneLake Reliability Considerations
Data Redundancy
OneLake stores data in Azure Data Lake Storage Gen2 with locally redundant storage (LRS) by default. For mission-critical workloads requiring geo-redundancy, consider implementing cross-region replication strategies using Fabric mirroring or external backup solutions.
	Scenario
	Default Behavior
	Recommended Action

	Data Center Failure
	LRS protects against hardware failure
	Implement cross-region backup for critical data

	Accidental Deletion
	Soft delete (if enabled) or time travel
	Configure retention policies, test recovery

	Corruption
	Delta Lake ACID transactions
	Implement data quality checks before commits

	Regional Outage
	No automatic failover
	Design multi-region architecture for critical workloads

Delta Lake Time Travel
Configure appropriate retention periods for time travel based on recovery requirements. The default 7-day retention may be insufficient for regulatory compliance or extended recovery scenarios.
1. Set delta.logRetentionDuration based on recovery point objectives (RPO)
1. Configure delta.deletedFileRetentionDuration to match or exceed log retention
1. Document VACUUM procedures and their impact on time travel capability
1. Test point-in-time recovery procedures quarterly
1.3 Pipeline Reliability
Retry Policies
Configure appropriate retry policies for transient failures. Fabric Data Factory supports configurable retry counts, intervals, and timeout settings that should be tuned based on source system characteristics.
	Activity Type
	Recommended Retries
	Interval
	Timeout

	Copy Activity (API)
	3-5 retries
	30 seconds
	4 hours

	Copy Activity (Database)
	3 retries
	60 seconds
	2 hours

	Notebook Activity
	2 retries
	60 seconds
	Based on workload

	Dataflow Activity
	3 retries
	30 seconds
	2 hours

Idempotent Design
Design all data pipelines to be idempotent—running the same pipeline multiple times should produce the same result. This is critical for retry scenarios and reprocessing requirements.
1. Use MERGE operations instead of INSERT for incremental loads
1. Implement watermark-based incremental extraction with replay capability
1. Partition data by load date to enable partition-level reprocessing
1. Log pipeline execution metadata for audit and replay
1.4 Gateway Reliability
On-premises data gateways are critical for hybrid connectivity. Implement high availability configurations for production workloads.
1. Deploy gateway clusters with minimum 2 nodes for production
1. Distribute gateway nodes across availability zones or physical locations
1. Monitor gateway health and configure alerts for failures
1. Implement automatic failover testing monthly
1. Maintain gateway version currency (update within 30 days of release)
1.5 Reliability Checklist
1. Recovery Point Objective (RPO) defined for each data domain
1. Recovery Time Objective (RTO) defined and achievable
1. Delta Lake retention configured to meet RPO requirements
1. Cross-region backup strategy implemented for critical data
1. Pipeline retry policies configured appropriately
1. All pipelines designed for idempotent execution
1. Gateway high availability configured for production
1. Disaster recovery procedures documented and tested
1. Monitoring and alerting configured for all critical components

Pillar 2: Security
Security in Microsoft Fabric encompasses protecting data at rest and in transit, managing identities and access, detecting and responding to threats, and ensuring compliance with regulatory requirements. Fabric's integration with Microsoft Entra ID and Microsoft Purview provides a comprehensive security foundation.
2.1 Design Principles
Defense in Depth
Implement multiple layers of security controls so that if one layer fails, others continue to protect the system. In Fabric, this includes network controls, identity management, data encryption, and application-level security.
Least Privilege Access
Grant only the minimum permissions necessary for users and services to perform their functions. Fabric's workspace roles, item permissions, and row-level security enable granular access control.
Assume Breach
Design systems assuming that attackers may gain access. Implement logging, monitoring, and anomaly detection to identify and respond to potential breaches quickly.
2.2 Identity and Access Management
Workspace Security Model
Fabric workspaces are the primary security boundary. Understand the four built-in roles and their permissions:
	Role
	Permissions
	Typical Assignment

	Admin
	Full control including workspace settings, membership, and all items
	Platform Team leads, Workspace owners

	Member
	Create, edit, delete items; cannot manage workspace settings
	Data Engineers, Developers

	Contributor
	Create, edit items; limited delete capabilities
	Data Analysts, Report builders

	Viewer
	View and interact with items; no edit capabilities
	Business users, Consumers

Item-Level Permissions
Beyond workspace roles, individual items (Lakehouses, Warehouses, Semantic Models) support granular permissions. Use item-level sharing for scenarios requiring access to specific assets without broader workspace access.
1. Share individual items rather than granting workspace membership where possible
1. Use Microsoft Entra security groups for scalable permission management
1. Implement service principals for automated workloads instead of user accounts
1. Review and audit permissions quarterly
2.3 Data Protection
Encryption at Rest
OneLake data is encrypted at rest using Microsoft-managed keys by default. For enhanced control, configure customer-managed keys (CMK) using Azure Key Vault for regulated workloads.
Encryption in Transit
All data transmitted to and from Fabric is encrypted using TLS 1.2 or higher. This includes data movement through pipelines, gateway connections, and client access.
Row-Level Security (RLS)
Implement RLS to restrict data access at the row level based on user identity. RLS can be configured in both Semantic Models (DAX) and Warehouse/Lakehouse (T-SQL).
	RLS Location
	Implementation Approach

	Semantic Model
	DAX filter expressions evaluated at query time; managed in Power BI Desktop

	Warehouse
	T-SQL security predicates using CREATE SECURITY POLICY; evaluated at storage layer

	Lakehouse SQL
	Views with CURRENT_USER() filtering; evaluated at query time

Column-Level Security
For sensitive columns (SSN, salary, health information), implement column-level security to restrict access to specific users or roles. In Fabric Warehouse, use GRANT/DENY on specific columns.
Dynamic Data Masking
Mask sensitive data for non-privileged users while allowing full access for authorized personnel. Fabric Warehouse supports SQL Server dynamic data masking syntax.
2.4 Network Security
Private Endpoints
For organizations requiring private connectivity, Fabric supports Azure Private Link for private endpoint access to OneLake and Fabric services. This ensures data never traverses the public internet.
1. Configure private endpoints for production workloads in regulated industries
1. Implement private DNS zones for seamless name resolution
1. Use ExpressRoute or VPN for gateway connectivity
1. Block public access where private endpoints are configured
2.5 Microsoft Purview Integration
Microsoft Purview provides unified data governance including data cataloging, classification, lineage, and access policies. Fabric's native Purview integration enables:
1. Automatic asset discovery and registration in Purview catalog
1. Sensitivity labels propagating from data sources through to reports
1. Column-level lineage tracking for impact analysis
1. Data access policies managed centrally in Purview
1. Compliance reporting and audit trail
2.6 Security Checklist
1. Workspace roles follow least privilege principle
1. Microsoft Entra security groups used for permission management
1. Service principals used for automated workloads
1. Row-level security implemented for multi-tenant or sensitive data
1. Column-level security configured for sensitive attributes
1. Customer-managed keys configured for regulated data
1. Private endpoints configured for production environments
1. Purview integration enabled for governance and compliance
1. Audit logging enabled and monitored
1. Security reviews conducted quarterly

Pillar 3: Cost Optimization
Cost optimization in Microsoft Fabric involves understanding the consumption-based pricing model, implementing governance to prevent runaway costs, and continuously optimizing workloads to maximize value. Fabric's unified platform simplifies cost management compared to multi-service architectures but requires disciplined capacity planning.
3.1 Design Principles
Understand the Cost Model
Fabric uses Capacity Units (CUs) as the primary billing metric. All workloads—Spark, SQL, Data Factory, Power BI—consume CUs from a shared capacity pool. Understanding CU consumption patterns is essential for cost optimization.
Right-Size Capacity
Select the appropriate Fabric SKU based on workload requirements. Over-provisioning wastes budget while under-provisioning impacts performance and user experience.
Implement FinOps Practices
Establish governance processes for capacity monitoring, cost allocation, showback/chargeback, and optimization reviews.
3.2 Fabric Capacity Sizing
	SKU
	CU/Month
	Typical Use Case
	Considerations

	F2
	2 CU
	Dev/Test
	Limited concurrent workloads; suitable for individual developer environments

	F4-F8
	4-8 CU
	Small Team
	Shared development environments; light production workloads

	F16-F32
	16-32 CU
	Department
	Production workloads with moderate concurrency; multiple domains

	F64-F128
	64-128 CU
	Enterprise
	High concurrency; complex ETL; large semantic models

	F256+
	256+ CU
	Large Enterprise
	Massive scale; real-time analytics; AI/ML workloads

Reserved vs. Pay-As-You-Go
Fabric offers both reservation pricing and pay-as-you-go consumption. For predictable workloads, 1-year or 3-year reservations can reduce costs by 20-40% compared to pay-as-you-go rates.
1. Analyze 3+ months of consumption data before committing to reservations
1. Reserve for baseline workloads; use pay-as-you-go for burst capacity
1. Consider hybrid approach: reserved base + pay-as-you-go overflow
1. Review reservation utilization monthly and adjust annually
3.3 Workload Cost Optimization
Spark Optimization
Spark workloads can consume significant CUs. Optimize through efficient code, appropriate cluster sizing, and workload scheduling.
1. Use V-Order optimization for Delta tables to reduce read costs
1. Implement partition pruning through predicate pushdown
1. Cache frequently accessed DataFrames appropriately
1. Schedule heavy workloads during off-peak hours
1. Monitor and optimize shuffle operations
Warehouse Optimization
SQL Warehouse queries consume CUs based on query complexity and data scanned.
1. Use result set caching for frequently executed queries
1. Implement query timeout policies to prevent runaway queries
1. Optimize table statistics for query planner efficiency
1. Use appropriate data types to minimize storage and compute
Power BI Optimization
Direct Lake mode significantly reduces Power BI CU consumption compared to Import or DirectQuery modes.
1. Use Direct Lake for large datasets where possible
1. Implement aggregation tables for high-cardinality dimensions
1. Optimize DAX measures to reduce calculation time
1. Configure incremental refresh for large fact tables
3.4 Capacity Governance
Monitoring and Alerting
Implement proactive monitoring to identify cost anomalies before they impact budget.
1. Deploy Fabric Capacity Metrics app for consumption visibility
1. Configure alerts for capacity utilization exceeding 80%
1. Track CU consumption by workspace for chargeback
1. Review consumption reports weekly in operations review
Auto-Pause Policies
Configure auto-pause for non-production environments to reduce costs during idle periods.
3.5 Cost Optimization Checklist
1. Capacity SKU right-sized based on workload analysis
1. Reserved capacity purchased for predictable baseline workloads
1. Capacity Metrics app deployed and monitored
1. Cost alerts configured for budget thresholds
1. Auto-pause enabled for non-production environments
1. Spark workloads optimized (V-Order, partitioning, caching)
1. Direct Lake mode used for Power BI where applicable
1. Chargeback/showback model implemented by workspace
1. Monthly cost optimization review conducted

Pillar 4: Operational Excellence
Operational excellence encompasses the processes and practices that keep your Fabric environment running smoothly. This includes DevOps practices, monitoring and observability, incident management, and continuous improvement.
4.1 Design Principles
Operations as Code
Treat infrastructure and workload configurations as code. Use version control, code reviews, and automated deployment for all Fabric artifacts.
Automate Everything
Automate deployments, testing, monitoring, and incident response wherever possible to reduce human error and increase consistency.
Learn from Failures
Implement blameless postmortems and continuous improvement processes to learn from incidents and prevent recurrence.
4.2 DevOps for Fabric
Git Integration
Fabric's native Git integration enables version control for workspaces. Implement a branching strategy appropriate for your team size and release cadence.
	Branch
	Purpose

	main
	Production-ready code; protected branch requiring PR approval

	develop
	Integration branch for completed features; auto-deploys to Dev environment

	feature/*
	Individual feature development; short-lived branches

	hotfix/*
	Emergency production fixes; merged to main and develop

	release/*
	Release candidates; staging for production deployment

Deployment Pipelines
Fabric Deployment Pipelines enable promoting artifacts through Dev → Test → Production stages with approval gates and automated testing.
1. Configure three-stage pipeline: Development, Test, Production
1. Implement approval gates between Test and Production stages
1. Use deployment rules to manage environment-specific configurations
1. Automate smoke tests post-deployment
CI/CD Integration
For advanced scenarios, integrate Fabric deployments with Azure DevOps or GitHub Actions using Fabric REST APIs and PowerShell cmdlets.
4.3 Monitoring and Observability
Fabric Monitoring Hub
Use Fabric's built-in Monitoring Hub for real-time visibility into running activities across all workloads.
Capacity Metrics
Deploy the Fabric Capacity Metrics app to monitor CU consumption, identify top consumers, and track trends over time.
Pipeline Monitoring
Implement comprehensive pipeline monitoring to ensure data freshness SLAs are met.
1. Configure pipeline failure alerts via email or Teams
1. Track pipeline duration trends to identify degradation
1. Implement data freshness SLA monitoring for critical pipelines
1. Log pipeline metadata to central audit table
Log Analytics Integration
Export Fabric logs to Azure Log Analytics for centralized monitoring, custom alerting, and long-term retention.
4.4 Incident Management
Incident Classification
	Severity
	Impact
	Response Time
	Example

	SEV-1
	Complete outage
	15 minutes
	Production capacity unavailable

	SEV-2
	Major degradation
	1 hour
	Critical pipeline failure

	SEV-3
	Minor impact
	4 hours
	Non-critical report failure

	SEV-4
	Minimal impact
	Next business day
	Cosmetic issues

Runbooks
Maintain runbooks for common operational procedures and incident response scenarios. Runbooks should be version-controlled and regularly tested.
4.5 Operational Excellence Checklist
1. Git integration enabled for all production workspaces
1. Deployment pipelines configured with approval gates
1. Branching strategy documented and followed
1. Monitoring Hub reviewed daily by operations team
1. Capacity Metrics app deployed and monitored
1. Pipeline failure alerts configured
1. Incident response procedures documented
1. Runbooks maintained for common operations
1. Postmortem process established for incidents

Pillar 5: Performance Efficiency
Performance efficiency involves using compute, storage, and network resources effectively to meet requirements. In Fabric, this means optimizing Spark jobs, SQL queries, data models, and consumption patterns to deliver fast, responsive analytics.
5.1 Design Principles
Optimize for the Workload
Select the right Fabric engine (Spark, T-SQL, KQL) based on workload characteristics. Each engine has strengths for specific use cases.
Design for Scale
Architect systems that can handle growth in data volume, user concurrency, and query complexity without redesign.
Measure and Iterate
Establish performance baselines, continuously measure against them, and iterate on optimizations based on data.
5.2 Engine Selection
	Engine
	Optimal For
	Avoid For

	Spark
	Large-scale ETL, data engineering, ML training, complex transformations
	Simple queries, small datasets, real-time

	T-SQL Warehouse
	Analytical queries, BI workloads, SQL-skilled users
	Streaming data, unstructured data

	KQL
	Log analytics, streaming data, time-series analysis
	Transactional queries, complex joins

	Dataflows Gen2
	Low-code ETL, Power Query transformations
	Complex logic, very large datasets

5.3 Lakehouse Performance
Delta Lake Optimization
Optimize Delta tables for query performance through file organization, statistics management, and query patterns.
1. Enable V-Order on tables queried by Power BI for columnar optimization
1. Implement Z-Order clustering on frequently filtered columns
1. Run OPTIMIZE regularly to compact small files (target 128MB-1GB files)
1. Collect statistics with ANALYZE TABLE for query optimization
1. Partition by date for time-series data with date predicate filters
Partitioning Strategy
Effective partitioning enables partition pruning, dramatically reducing data scanned for filtered queries.
	Pattern
	Recommendation

	Time-series data
	Partition by year/month or year/month/day based on query patterns

	Multi-tenant
	Partition by tenant_id for isolation and pruning

	Source-partitioned
	Partition by source_system for Bronze layer

	High cardinality
	Avoid partitioning on high-cardinality columns (>10K values)

5.4 Spark Performance
Configuration Tuning
Tune Spark configurations based on workload characteristics. Key parameters to consider:
1. spark.sql.shuffle.partitions — Set based on data size (default 200 often suboptimal)
1. spark.sql.adaptive.enabled — Enable adaptive query execution (AQE)
1. spark.sql.broadcastTimeout — Increase for large broadcast joins
1. spark.databricks.delta.optimizeWrite — Enable for automatic file sizing
Code Optimization
Write efficient Spark code to minimize resource consumption:
1. Use DataFrame API over RDD API for optimizer benefits
1. Push predicates early in the query plan (filter before join)
1. Use broadcast joins for small dimension tables (<10MB)
1. Avoid UDFs where built-in functions exist
1. Cache DataFrames only when reused multiple times
5.5 Direct Lake Performance
Direct Lake mode enables Power BI to query Delta tables directly without import, providing near-real-time analytics with reduced memory consumption.
Framing Optimization
Direct Lake creates memory frames from Delta files. Optimize framing for best performance:
1. Keep tables under 10 billion rows for optimal framing
1. Enable V-Order during table writes for columnar optimization
1. Minimize column cardinality through proper data types
1. Monitor fallback to DirectQuery which indicates framing limits exceeded
5.6 Performance Efficiency Checklist
1. Engine selection matched to workload characteristics
1. V-Order enabled on tables consumed by Power BI
1. Z-Order clustering implemented on filter columns
1. OPTIMIZE scheduled for Delta table maintenance
1. Partitioning strategy aligned with query patterns
1. Spark configurations tuned for workload
1. Adaptive Query Execution (AQE) enabled
1. Direct Lake mode used where applicable
1. Performance baselines established and tracked

Appendix: Quick Reference
A.1 Pillar Summary Matrix
	Pillar
	Key Focus Areas
	Primary Metrics

	Reliability
	Data redundancy, recovery, idempotency, gateway HA
	RPO, RTO, pipeline success rate

	Security
	Identity, access control, encryption, compliance
	Unauthorized access attempts, audit compliance

	Cost Optimization
	Capacity sizing, workload efficiency, FinOps
	CU utilization, cost per workload, waste

	Operations
	DevOps, monitoring, incident management
	MTTR, deployment frequency, change failure rate

	Performance
	Engine selection, query optimization, scaling
	Query latency, throughput, resource efficiency

A.2 Resource Links
Microsoft Fabric Documentation: https://learn.microsoft.com/fabric
Well-Architected Framework: https://learn.microsoft.com/azure/well-architected
Fabric Community: https://community.fabric.microsoft.com
Fabric Ideas: https://ideas.fabric.microsoft.com

A.3 Document Information
	Document Title
	Microsoft Fabric Well-Architected Framework

	Version
	1.0

	Last Updated
	January 2026

	Classification
	Confidential - Internal Use

	Review Cycle
	Quarterly

Page of
